Summer of Code 2015 for wget

coming as a surprise, this year we have got 4 students to work full-time during the summer on wget. More than all the students who have ever worked for wget before during a Summer of Code!

The accepted projects cover different areas: security, testing, new protocols and some speed-up optimizations. Our hope is that we will be able to use the new pieces as soon as possible, this is why we ask students to keep their code always rebased on top of the current wget development version.

Improve Wget’s security
The project aims at adding HSTS support in wget and enhance FTP security through FTPS.
Speed up Wget’s Download Mechanism
Support two performance enhancements: conditional GET requests and TCP Fast Open.
HTTP/2 support
Basic HTTP/2 support on top of Nghttp2.
FTP Server Test Suite
Augment the tests suite with FTP tests.

Create a QCOW2 image for Fedora 22 Atomic

This tutorial shows how to create a QCOW2 image that can directly imported via virt-install to test out Fedora 22 Atomic starting from a custom OStree repo.

To create the image, we are going to use both rpm-ostree and rpm-ostree-toolbox. Ensure they are installed as well as Docker, libvirtd and Vagrant-libvirt.

The first phase consists in generating the OStree repo that is going to be used by the image. We can use directly the files from the fedora-atomic project as:

git clone --branch=f22
ostree --repo=repo init --mode=archive-z2
rpm-ostree-toolbox treecompose -c fedora-atomic/config.ini --ostreerepo repo # Creates a new repo

At the end of this process, we have a new OStree repository which contains the tree of a Fedora 22 Cloud.

The second phase is more tricky and requires some manual customizations. Also it requires Docker, Vagrant-libvirt and libvirtd.

To use the repository that we have created in the first phase, we need to spawn an OStree HTTP daemon that will serve the files.

We do it by running:

cd repo
ostree -d trivial-httpd -p - # It will print the TCP port it is listening on

As the comment above says, OStree will print to stout the port where the server is listening on. Take note of it as we will need it later.

We are almost ready to create the QCOW2 image. For the unattended installation of the operating system, we need the fedora-cloud-atomic.ks file from the spin-kickstarts.git project.

git clone --branch=f22
cp spin-kickstarts/fedora-cloud-atomic.ks .

At this point, modify ./fedora-cloud-atomic.ks to point to our OStree repository.

This is how I modified the file to point to the OStree repo accessible at Use the correct settings for your machine, and the port used to serve the OStree repository that we noted before.

--- spin-kickstarts/fedora-cloud-atomic.ks	2015-04-17 15:41:17.124330230 +0200
+++ fedora-cloud-atomic.ks	2015-04-20 00:52:12.990728422 +0200
@@ -33,14 +33,14 @@
 logvol / --size=3000 --fstype="xfs" --name=root --vgname=atomicos
 # Equivalent of %include fedora-repo.ks
-ostreesetup --nogpg --osname=fedora-atomic --remote=fedora-atomic --url= --ref=fedora-atomic/f22/x86_64/docker-host
+ostreesetup --nogpg --osname=fedora-atomic --remote=fedora-atomic --url= --ref=fedora-atomic/f22/x86_64/docker-host
 %post --erroronfail
 # See
 ostree remote delete fedora-atomic
-ostree remote add --set=gpg-verify=false fedora-atomic ''
+ostree remote add --set=gpg-verify=false fedora-atomic ''
 # older versions of livecd-tools do not follow "rootpw --lock" line above

Now we are really ready to generate the image:

rpm-ostree-toolbox imagefactory -c fedora-atomic/config.ini -o output -i kvm -k fedora-cloud-atomic.ks --tdl fedora-atomic/fedora-atomic-22.tdl --ostreerepo repo

If everything goes as expected, the image file will be under output/images.

ls output/images
fedora-atomic-f22.qcow2.gz  SHA256SUMS

At this point it can be imported through virt-install as (atomic0cidata.iso is a CD iso which contains the cloud-init initialization data):

gunzip output/images/fedora-atomic-f22.qcow2.gz
virt-install --name f22-cloud --ram 2048 --import --disk path=output/images/fedora-atomic-f22.qcow2 --os-type=fedora-21 --graphics spice --disk path=atomic0cidata.iso,device=cdrom

This command will create a new VM named f22-cloud with 2G of RAM using the QCOW2 image we’ve generated.

Have fun!

How to deploy a WordPress Docker container using docker-compose

These are the steps to setup the current website in a Docker container:

wget -O-`uname -s`-`uname -m` > /usr/local/bin/docker-compose

mkdir wordpress
cd wordpress

Then create a file fig.yml which contains:

  image: mysql:5.5
  image: wordpress:latest
    - "80:80"
    - db:mysql

This description takes advantage of a Docker feature to bind together two or more containers: Docker links. We use it to make the WordPress container depends on another container with MySQL 5.5.

The docker-compose up command will read fig.yml, download the needed data and deploy the two containers.

/usr/local/bin/docker-compose up

Et voilà, the port 80 of the host which runs the container will be forwarded to the port 80 of the WordPress container.